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The free bending vibration of a rotating shaft composed of multi-step segments
with each segment having a uniform circular cross-section has been analyzed using
the Timoshenko beam model. Torque has been applied at each end as in
a power-transmission shaft and the gyroscopic e!ect due to the shaft rotation has
also been considered. The separation of time and spatial variables has been
performed for the di!erential equation of motion, and then the spatial solution in
a segment of uniform cross-section has been expressed in a closed form.
Application of boundary conditions has induced global equations of a rotor
system, from which the natural frequencies and corresponding mode shapes have
been obtained. The entire procedure is straightforward, and thus the resultant
mode shapes are continuous unlike the result of existing methods such as the "nite
element method and transfer matrix method. E!ects of the rotating speed and the
applied torque at both ends on the free vibration of the rotating shaft have been
discussed. The natural frequencies of the forward and backward modes have been
compared with the results using the "nite element method. The shear force and
bending moment distributions along the shaft at each mode have been derived by
di!erentiating the mode curves. ( 1999 Academic Press
1. INTRODUCTION

Vibrations of rotating bodies result from various sources. Most of the vibration
sources are extrinsic anomalies such as unbalance and misalignment, and some of
the sources are intrinsic factors such as bearing or shaft asymmetries. Since the
vibration sources exist unavoidably in rotating bodies as vibrating systems, it is
important to obtain the natural vibration characteristics for designing rotating
shafts. If a synchronous or non-synchronous component in the vibration spectrum
of the shaft coincides with a natural frequency, the shaft does not work normally
due to resonance.

The vibration of general rotating shaft is analyzed usually by the "nite element
method or transfer matrix method. These methods calculate physical parameter
values, for example displacements, at nodal points, and they provide accurate but
discontinuous mode-shape curves. Other approaches [1, 2] to obtain continuous
0022-460X/99/290625#18 $30.00/0 ( 1999 Academic Press
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mode-shape curves have been reported for bending or torsional vibrations, but the
approach for bending vibration has limitations because the analysis is based on the
Euler}Bernoulli beam theory [1], which does not include the rotary inertia and
shear deformation of the cross-sections. The e!ect of the rotary inertia and shear
deformation reduces the fundamental natural frequency by 0)3% in a uniform beam
with a radius-to-length ratio of 1 : 20, and the e!ect is bigger for higher modes [3].
The larger the radius-to-length ratio, the bigger the e!ect of the rotary inertia and
shear deformation is on the fundamental natural frequency. Thus, the Timoshenko
beam theory, which includes the rotary inertia and shear deformation of the
cross-section, is applied to a general rotating shaft for an accurate analysis.

In this paper, a general rotating shaft is considered as a multi-step shaft model
with each step having a uniform cross-section. Torque is applied at each end as in
a power-transmission shaft and the gyroscopic e!ect due to the shaft rotation is
also included in the equation of motion based on the Timoshenko beam theory.
During the analysis of the free bending vibration, two vertical displacements are
expressed as one complex variable and separation of time and spatial variables is
introduced. By solving the resulting polynomial equation and applying boundary
conditions, natural frequencies and continuous mode-shape curves are obtained for
the general rotating shaft. The continuous mode shape curve is used to calculate
shear force and bending moment distributions.

2. PROBLEM FORMULATION

The elastodynamic behavior of a thick uniform shaft is described by considering
the rotary inertia and shear deformation of the cross-section, like the general beam
theory. Especially for the rotating shaft, the gyroscopic e!ect due to the rotation is
also considered. With the torque in a power-transmitting shaft included, the
equation of motion of the rotating shaft is written as follows [4]:
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where x is the axial co-ordinate and y and z are the displacements in the horizontal
and vertical directions respectively. ¹ is the torque on each end of the shaft, and E,
G, and o are Young's modulus, shear modulus, and mass density respectively. A and
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I are the area and area moment of inertia of the cross-section, r
0

is the radius of
gyration, i is the form factor, and X is the rotating speed.

Since equations (1) are coupled, the solution of y and z cannot be obtained
simply. To avoid solving the coupled equations the dynamic behavior in the x}y
and x}z planes can be expressed by one equation in terms of the following complex
variable:

u(x, t)"y(x, t)#jz (x, t). (2)

By using u (x, t) of equation (2), equation (1) is reduced to one equation as follows:
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Equation (3) can be reordered according to the order of the derivatives with respect
to x as follows:
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which is a fourth order partial di!erential equation of u(x, t).
Meanwhile, the boundary conditions are expressed in terms of the displacement,

slope of the shaft, bending moment, and shearing force as follows [2]:

displacement u (x, t), (5a)
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3. ANALYTICAL APPROACH

Equation (4) is solved analytically by separation of variables as follows.
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3.1. SEPARATION OF VARIABLES

The time-dependent harmonic motion of natural frequency u can be separated in
the variable u (x, t) as

u(x, t)";(x)e+ut. (6)

Substituting equation (6) into equation (4) results in the following equation:
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Equation (7) is a fourth order ordinary di!erential equation of a complex variable
; and complex coe$cients in the following form:
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Equation (8) has solutions of the form of;"pejx, and substituting it into equation
(8) yields the fourth order polynomials of j, which is also complex:

j4#aj3#bj2#cj#d"0. (10)

3.2. SOLUTIONS OF THE FOURTH ORDER POLYNOMIAL

The fourth order polynomial of equation (10) has the following third order
analytic equation [5]:

k3!bk2#(ac!4d)k!a2d#4bd!c2"0. (11)
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Let a root of the third order polynomial equation for k be k
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Then the roots of equation (10) can be written as
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The solution of equation (8) is expressed in terms of the root j's as

;"p
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4
ej4x. (15)

Equation (15) means that the elastodynamic behavior of the rotating shaft is
dependent on j's, which are determined by several parameters, such as rotating
speed X, natural frequency u, and geometric and material properties of the shaft.
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The coe$cients p
1
, p

2
, p

3
, p

4
of equation (15) are also complex values de"ned in

a uniform shaft segment.

3.3. MULTI-STEP SHAFT

The derivation shown above can be extended to the non-uniform shaft, like
a multi-step shaft whose cross-section is uniform in each step. The deformation of
the ith step segment can be expressed as
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At an interface of two steps, i.e., at the right end of the left element and the left of the
right element, the continuity is maintained for the displacement, slope of the shaft,
bending moment, and shearing force. This statement is written by using the
expressions of equation (5) as

; D
L
"; D

R
, (17a)

d;
dx K

L

"

d;
dx K

R

, (17b)

EI
d2;
dx2

!j¹
d;
dx K

L

"EI
d2;
dx2

!j¹
d;
dx K

R

, (17c)

EI
d3;
dx3

!j¹
d2;
dx2

#oAr2
o
(u2!2uX)

d;
dx K

L

"EI
d3;
dx3

!j¹
d2;
dx2

#oAr2
o
(u2!2uX)

d;
dx K

R

. (17d)

Our attention is concentrated on the power-transmitting shaft, and the
additional boundary conditions are classi"ed and written in the Appendix A.

4. ANALYSIS RESULTS

Selecting adequate boundary conditions among equations (A1)}(A6) and
applying them to the given system of a rotating shaft give equations for the full
system. The equations consist of a matrix whose dimension is four times the
number of shaft steps and of a vector Mp
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NT.

The matrix includes (2]4) submatrices obtained at each end and (4]8)
submatrices obtained at the interfaces of the shaft steps. This homogeneous matrix
equation is a characteristic value problem.



FREE BENDING VIBRATION OF A MULTI-STEP ROTOR 631
The homogeneous matrix equation has non-trivial solutions when the
determinant of the matrix is zero. The roots u's of the characteristic determinant
equation are the natural frequencies of the shaft. The corresponding solutions p
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are the coe$cients determining the deformation
of the shaft. In the analysis the values j

i1
, j
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, j

i3
, j

i4
de"ned in each step are also to

be obtained in order to calculate the shaft deformation.

4.1. STATIONARY UNIFORM SHAFT WITH NO TORQUE

In order to con"rm the accuracy of the analysis method, the natural frequencies
of a uniform shaft have been calculated and compared with the corresponding
values obtained from the Euler}Bernoulli beam theory. It has been assumed that
the rotating speed X is zero and no torque ¹ is exerted. The dimensions of the shaft
considered for the calculation are length (l ) 1 m and diameter (d) 50 mm. The
material properties are Young's modulus (E) 2)058]1011 N/m2, the Poisson ratio
(l) 0)29, and mass density (o) 7800 kg/m3.

The natural frequencies calculated for the shaft model equally divided into two
and four elements respectively coincide with each other within four signi"cant
digits for the "rst three modes, and the results are shown in Table 1. The
corresponding natural frequencies obtained by the following formula of the
Euler}Bernoulli theory is also presented in Table 1:

u
n
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n2n2

l2
. (18)

The uniform shaft model used for the calculation has the aspect ratio (d/l) equal
to 0)05. The di!erence between the two results is within 0)30% for the fundamental
frequency. The di!erence is increased for higher modes, because the rotary inertia
and shear deformation, which are neglected in the Euler}Bernoulli theory,
TABLE 1
Comparison of natural frequencies of the stationary uniform shaft with no torque,
obtained from the Euler}Bernoulli beam theory and calculated by the analysis method

presented in this paper

Mode Natural frequency (Hz)

Euler}Bernoulli theory This paper's method
(using Timoshenko theory)

1st 100)9 100)6
2nd 403)4 399)6
3rd 907)7 888)1
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contribute and reduce the natural frequency. This comparison supports the
accuracy of the method of this paper.

4.2. STATIONARY MULTI-STEP SHAFT WITH NO TORQUE

As a "rst step of the analysis for the multi-step shaft model shown in Figure 1, the
analysis method had been used to obtain the natural vibration characteristics of the
stationary shaft. Thus it has been assumed that the rotating speed X is zero and no
torque ¹ is exerted. The dimensions of the shaft model shown in Figure 1 have
been speci"ed in Table 2. The material properties of the shaft are the same as
mentioned in section 4.1.

In the multi-step shaft model, the interface between Element 1 and Element 2 is
simply supported, and so is the end of Element 6. By applying these conditions and
the cross-section jump conditions described in detail in the Appendix A, the
equations for the entire system have been constructed in terms of the parameters
p
i1
, p

i2
, p

i3
, p

i4
and j

i1
, j

i2
, j

i3
, j

i4
of the ith (i"1, 2,2, 6) uniform element.

The natural frequencies of the "rst four modes calculated by the analysis method
described in section 3 are 268)7, 1104)1, 2411)8, and 4200)3 Hz. These are listed in
r.p.m. unit in the "rst row of Table 3. In the table &exact' indicates the results
obtained by this study, while &FEM' indicates the results obtained using the "nite
element method. This comparison shows a bigger error for a higher mode in the
FEM result. The errors follow an increasing trend from the "rst mode"0)089%,
0)38%, 2)82%, and 8)84%.
Figure 1. Multi-step shaft model and element numbers used for the analysis. The length and
diameter of each element are listed in Table 2.

TABLE 2
Speci,cation of the multi-step shaft model shown in Figure 1

Elements Length (cm) Diameter
(cm)

1 3 4
2 17 5
3 10 4
4 10 6
5 10 5
6 10 4
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Figure 2. Normalized mode shapes of the "rst four natural modes of bending vibration.

634 O. S. JUN AND J. O. KIM
4.3. ROTATING MULTI-STEP SHAFT WITH TORQUE

The natural frequencies of the rotating multi-step shaft with torque depend on
the rotating speed and torque. The e!ect of rotation on the natural frequency has
been examined by "xing the torque at zero and considering various rotation speeds
from 0 to 20,000 r.p.m. The natural frequencies calculated for the forward and
backward precessions of the "rst four modes are listed in r.p.m. units in Table 3,
which shows an increase of the natural frequency for the forward precession and
a decrease for the backward precession. This phenomenon is understood as the
sti!ening and softening of the gyroscopic e!ect. These results are compared with
the results obtained by using the "nite element method. The separation of the
natural frequencies of the forward and backward precessions with increasing
rotating speed is consistent with the "nite element method result in the sense of the
trend and the magnitude. The mode shapes corresponding to the natural modes
listed in Table 3 are shown in Figure 2. Timoshenko beam theory has been applied
to the shaft of stepped cross-sections, and the mode shapes have been obtained as
continuous curves. It appears that there is no variation of the mode shape
according to the rotating speed.

The e!ect of torque has been examined by "xing the rotating speed at zero and
5000 r.p.m. and considering various torque from 0 to 100,000 Nm. The natural
frequencies calculated for the "rst four modes of 0 and 5000 r.p.m. are listed in
Tables 4 and 5 respectively. As the torque increases, the natural frequency decreases
in the calculated four modes. In the presence of torque, the eigenvalues are complex
values and the mode shapes are in a twisted plane out of a #at plane. The mode
shapes calculated for shaft rotation speed 5000 r.p.m. and applied torque
100,000 Nm are shown in Figure 3. In this "gure, (a) is the amplitude of the modes
and (b) is the twisting angle with a 3603 tic mark interval.



TABLE 4
Natural frequencies of the multi-step shaft with applied torque (X"0)

Torque Natural frequencies (r.p.m.)
(Nm)

1st mode 2nd mode 3rd mode 4th mode

0}100 16120)7 66246)1 144707)4 252016)8
1000 16120)7 66246)0 144707)3 252016)7

10000 16118)4 66242)8 144703)7 252013)0
100000 15888)6 65918)0 144342)3 251633)8

TABLE 5
Natural frequencies of the multi-step shaft with applied torque (X"5000 r.p.m.)

Torque

Natural frequencies (r.p.m.)

(Nm) 1st mode 2nd mode 3rd mode 4th mode

Backward Forward Backward Forward Backward Forward Backward Forward

0}100 16099)9 16141)4 66144)5 66347)8 144549)6 144865)2 251706)0 252327)8
1000 16099)9 16141)4 66144)5 66347)7 144549)6 144865)2 251705)9 252327)7

10000 16097)6 16139)2 66141)2 66344)5 144546)0 144861)6 251702)2 252324)0
100000 15867)6 15909)6 65816)3 66019)9 144184)5 144500)2 251322)6 251945)2
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4.4. MODE SHEAR FORCE AND BENDING MOMENT CURVES

The mode shapes shown in Figure 2 have numerically di!erentiated with respect
to the axial co-ordinate. The derivatives have been substituted into equation (17) to
yield shear force and bending moment distribution curves shown in Figures 4 and 5
respectively.

The nodes and anti-nodes of shear force distribution of Figure 4 correspond to
the anti-nodes and nodes respectively of the natural mode shapes. Meanwhile, the
bending moment distribution of Figure 5 shows a trend similar to the natural mode
shapes. The calculation of mode shear force and bending moment curves as well as
the natural mode shapes can be used for evaluating the stress distribution, and
hence for trouble-shooting and design.

5. CONCLUSION

Bending vibrations of a rotating shaft with a discontinuously varying
cross-section have been analytically studied by using the Timoshenko beam theory
including rotary inertia and shear deformation. Torque has been considered as in



Figure 3. Mode shapes of the "rst four natural modes of bending vibration (rotation speed
5000 r.p.m., applied torque 100,000 N m): (a) normalized mode amplitude, (b) twist angle of mode
plane.
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a power-transmission shaft and the gyroscopic e!ect due to the shaft rotation also
has been included in the equation of motion.

In contrast to numerical analysis such as the "nite element method, the analysis
presented in this paper uses the di!erential equation of motion for a continuous
system and obtains solutions by applying boundary conditions. The fourth order
partial di!erential equation has been transformed into an ordinary di!erential
equation by expressing two vertical displacement components as one complex
variable and introducing separation of time and spatial variables. A system of
algebraic equations resulting from the ordinary di!erential equations with assumed



Figure 4. Shear force distribution of the "rst four modes.

Figure 5. Bending moment distribution of the "rst four modes.
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forms of solutions and boundary conditions have yielded natural frequencies and
modes.

The accuracy of the analysis method has been con"rmed by calculating the
natural frequencies of a stationary uniform shaft with no torque and comparing
them with the corresponding values obtained from the Euler}Bernoulli beam
theory. The natural frequencies of a rotating multi-step shaft have been calculated
for forward and backward precession. The comparison with the results obtained
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using the "nite element method shows a bigger error for a higher mode in the FEM
result. The analysis has been applied to the rotating multi-step shaft with
torque, and has yielded natural frequencies and modes as a form of continuous
curve.

The e!ect of the torque applied at each end of the shaft changes the
characteristics of natural vibration of the rotating shaft. The change of the natural
frequencies due to the applied torque is in the decreasing direction in all modes at
a given rotating speed. In the presence of the torque, the mode shapes appear in
a twisted plane out of a #at plane.

The analysis method presented in this paper has yielded accurately the
natural vibration characteristics of a rotating multi-step shaft with torque. In
contrast to the "nite element method, this method has obtained a continuous
mode-shape curve, and hence it can provide shear force and bending moment
distribution.

ACKNOWLEDGMENT

The authors thank Prof. S.-W. Hong for the FEM calculation and Prof. C.-W.
Lee for the helpful discussions. This work was partially supported by a grant from
the Critical Technology 21 Project of the Ministry of Science and Technology,
Korea.

REFERENCES

1. P. Y. KIM, R. C. FLANAGAN and I. R. G. LOWE 1989 Rotating Machinery Dynamics, ASME
Publication DE 18, 71}76. A new method for the critical speed calculation of
rotor-bearing systems*part I: theory.

2. O. S. JUN and P. Y. KIM 1994 Proceedings of the International Conference on <ibration
Engineering, Beijing, 759}764. A method for torsional critical speed calculation of
practical industrial rotors.

3. D. J. INMAN 1996 Engineering <ibration, Englewood Cli!s, NJ: Prentice-Hall, Inc.
Chapter 6.

4. C.-W. LEE 1993 <ibration Analysis of Rotors, The Netherlands: Kluwer Academic
Publishers. Chapter 8.

5. W. H. BEYER 1979 CRC Standard Mathematical ¹ables. U.S.A: CRC Press Inc.

APPENDIX A

The boundary conditions at speci"ed boundaries and interfaces are as follows.
These have been derived from equations 17(a}d).

Free left end (1st node):

EI
1
j2
11
!j¹j

11
EI

1
j2
12
!j¹j

12
EI

1
j2
13
!j¹j

13
EI

1
j2
14
!j¹j

14

T p
11

p
12

p
13

p
14

"0, (A1a)



EI
1
j3
11
#oA

1
r2
1o

(u2!2uX)j
11
!j¹j2

11
EI

1
j3
12
#oA

1
r2
1o

(u2!2uX)j
12
!j¹j2

12
EI

1
j3
13
#oA

1
r2
1o

(u2!2uX)j
13
!j¹j2

13
EI

1
j3
14
#oA

1
r2
1o

(u2!2uX)j
14
!j¹j2

14

T p
11

p
12

p
13

p
14

"0. (A1b)

Free right end ((N#1)th node located in the Nth shaft step):
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Cross-section jump (nth node):
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Radially rigid bearing (nth node):
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Radially rigid bearing at the left end (1st node):
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Radially rigid bearing at the right end ((N#1)th node):
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